NavigationMatrixPatterns - MusterSolution - Lösungsolutions for higher cubes and other types - Lösungen für größere Würfel und andere TypenLinksspeedcubing - Schnelldrehendiary - Tagebuchpoetry - Poesiequicklink speedcubing - Schnellzugriff Schnelldrehenagainst righteous - gegen Rechtsabout me - über michmail to Admin - email an den AdministratorImpressumJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
Deutsch Ecken negativ drehen, alle Kanten wenden - Kantentausch english twisting corners negative, flipping all edges - permuting edges
Corners Moved Straight - Edges Moved Straight 1Corners Moved Straight - Edges Moved Straight 2Corners Moved Straight - Edges Moved Diagonal P1Corners Moved Straight - Edges Moved Diagonal P2Corners Moved Straight - Edges Moved Diagonal M2Corners Moved Straight - Edges Moved Diagonal M1CMD1 EMS1CMD2 EMS1Corners Moved Diagonal 2 - Edges Moved Diagonal P1Corners Moved Diagonal 1 - Edges Moved Diagonal P1Corners Moved Positive - the long arm is the 'arrowpeak'Corners Moved Negative - the long arm is the 'arrowpeak'Corners Moved ParallelCorners Moved CrossEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved ParallelEdges Moved CrossG-Permutation - Nose UpG-Permutation - Hand UpG-Permutation - Hand DownG-Permutation - Nose DownEdges Flipped NeighboursEdges Flipped OppositeEdges Flipped AllCorners Twisted StraightCorners Twisted NeighboursCorners Twisted DiagonalCorners Twisted PositiveCorners Twisted NegativeCorners Twisted RegularCorners Twisted IrregularCorners Moved Straight - Twisted StraightCorners Moved Straight - Twisted NeighboursCorners Moved Straight - Twisted DiagonalCorners Moved Straight - Twisted PositiveCorners Moved Straight - Twisted NegativeCorners Moved Straight - Twisted IrregularCorners Moved Straight - Twisted Regular
Twisting Corners & Flipping EdgesCorners Moved StraightCorners Moved DiagonalCorners Moved Positive - the long arm is the 'arrowpeak'Corners Moved Negative - the long arm is the 'arrowpeak'Corners Moved ParallelCorners Moved CrossFlipping EdgesEdges Moved StraightEdges Moved DiagonalEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved ParallelEdges Moved Crossbest browser - Bester Browsercolor distribution - Farbverteilung
from intact cube to intact cube sequencesTurning MiddlestonesCorners Twisted StraightCorners Twisted NeighboursCorners Twisted DiagonalCorners Twisted PositiveCorners Twisted NegativeCorners Twisted RegularCorners Twisted IrregularCorners Twisted Negative Mixed - webauthors sequencesCorners Twisted Negative - Edges Flipped Neighbours M1 - webauthors sequencesCorners Twisted Negative - Edges Flipped Neighbours P1 - webauthors sequencesCorners Twisted Negative - Edges Flipped Neighbours M2 - webauthors sequencesCorners Twisted Negative - Edges Flipped Neighbours P2 - webauthors sequencesCorners Twisted Negative - Edges Flipped Opposite 1 - webauthors sequencesCorners Twisted Negative - Edges Flipped Opposite 2 - webauthors sequencesCorners Twisted Negative - Edges Flipped All - webauthors sequences
Corners Twisted Negative Clear - corners and edges are fixCorners Twisted Negative Mixed - only corners are fixCorners Twisted Negative Mixed - no position is sureCorners Twisted Negative Mixed - webauthors sequences1 situationEdges Flipped NeighboursEdges Flipped OppositeEdges Flipped AllEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved Parallel
Corners Twisted Negative - Edges Flipped All - edges and corners are fixCorners Twisted Negative - Edges Flipped All - only corners are fixCorners Twisted Negative - Edges Flipped All - no position is sureCorners Twisted Negative - Edges Flipped All - webauthors sequences1 situation
A0CTTm1 EFAMU'rU²r'U'RU'rR²
M U' r U² r' U' R U' r R² (11,15)
r'RU'rU²r'U'RU'R²r
r' (R U') r U² r' U' (R U') R² r (11,15)
B0CTTm2 EFAfRUR'U'f'UFRUR'U'F'U
f · R U R' U' · f' U F · R U R' U' F' (13) BobBurton OLL 12
fRUR'U'f'UFRUR'U'F'Bob Burton's speed sequences 45
f (R U R' U') f' U F (R U R' U') F' (13)
C0CTTm3 EFALl'U'lU²l'U'LU'L²RJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
(L (L' M') U' (L M) U² (L' M') U') (L U' L²) R (11,13) Peter Jansen
D0CTTm4 EFAFURU'R'F'LFUF'U'L'JF-system compared by web authors - JF-System-Vergleich über Web-Autoren
F U R U' R' F' L F U F' U' L' (12,12) Ron van Bruchem
go to the top of the site
A1CTTm1 EFAr'RU'rU²r'U'RU'R''rJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
r' R U' r U² r' U' R U' R²' r (9,13) Dan Harris
A2RL'B'LU²L'B'RB'R²LJFVergleich über Web-Autoren
R - L' B' L U² L' B' - R B' R² - L (9,13)
A3Rr'U'rU²r'U'RU'R²LJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
(R (R' M) U' (R M') U² (R' M) U') (R U' R²) L (11,13) Peter Jansen
A4lL²U'LU'l'U²lU'M'
l L² U' L U' l' U² l U' M' (10,13) Peter Jansen
A5RUBU'B'R'FRUR'U'F'JF-system compared by web authors - JF-System-Vergleich über Web-Autoren
R U B U' B' R' F R U R' U' F' (12) Jessica Fridrich
A6m'B'LU²L'B'RB'R²'LJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
Rs B' L U² L' B' R B' R²'L (10,13) Jessica Fridrich
A7F'U²F'LFL'U'L'U'LU'FJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
F' U² F' L F L' U' L' U' L U' F (12,13) Jessica Fridrich
A8r'RU'rU²r'U'RU'R²rJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
r' R U' r U² r' U' R U' R² r (11,13) Dennis Nilsson
B1CTTm2 EFAfRUR'U'f'UFRUR'U'F'JF-system compared by web authors - JF-System-Vergleich über Web-Autoren
Fw R U R' U' Fw' - U - F R U R' U' F' (13) Shotaro Macky Makisumi
C1CTTm3 EFAymF'RU²R'F'LF'L²'RJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
y R' L F' R U² R' F' L F' RL²' (11,13) Ron van Bruchem
C2rR²U'RU'r'U²rU'Rr'JF-system compared by web authors - JF-System-Vergleich über Web-Autoren
r R² U' R U' r' U² r U' R r' (10,12) Dennis Nilsson
D1CTTm4 EFA
  english discussion about mentioned sequences (back to top)
go to the top of the site
deutsche Erörterung von Zugfolgen (zurück nach oben)  
    CTTp4 EFAfRUR'U'f'U'FRUR'U'F'U'    
   
This lucky combination is in itself a repeating one. But using first center-outer-slice turn and then outer-slice-move there is no chance to speak about "true" coummutators. But although the two parts of the sequence are divided by this little difference this distinction makes memorizing even easy.

   
Diese glückliche Folge besteht eigentlich aus einer Wiederholung. Da jedoch zuerst eine Mittel-Außen-Schicht-Drehung durchgeführt wird und darauf die Wiederholung mit einer Außenschicht-Operation statt findet, kann man eigentlich nur von"unechten" Kommutatoren sprechen. Dennoch, selbst dieser kleine Unterschied stellt zum Memorieren eigentlich kein Hindernis dar.

   
07/10/2007 10.07.2007