NavigationMatrixPatterns - MusterSolution - Lösungsolutions for higher cubes and other types - Lösungen für größere Würfel und andere TypenLinksspeedcubing - Schnelldrehendiary - Tagebuchpoetry - Poesiequicklink speedcubing - Schnellzugriff Schnelldrehenagainst righteous - gegen Rechtsabout me - über michmail to Admin - email an den AdministratorImpressumJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
Deutsch Ecken positiv drehen, alle Kanten wenden - Kantentausch english twisting corners positive, flipping all edges - permuting edges
Corners Moved Straight - Edges Moved Straight 1Corners Moved Straight - Edges Moved Straight 2Corners Moved Straight - Edges Moved Diagonal P1Corners Moved Straight - Edges Moved Diagonal P2Corners Moved Straight - Edges Moved Diagonal M2Corners Moved Straight - Edges Moved Diagonal M1CMD1 EMS1CMD2 EMS1Corners Moved Diagonal 2 - Edges Moved Diagonal P1Corners Moved Diagonal 1 - Edges Moved Diagonal P1Corners Moved Positive - the long arm is the 'arrowpeak'Corners Moved Negative - the long arm is the 'arrowpeak'Corners Moved ParallelCorners Moved CrossEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved ParallelEdges Moved CrossG-Permutation - Nose UpG-Permutation - Hand UpG-Permutation - Hand DownG-Permutation - Nose DownEdges Flipped NeighboursEdges Flipped OppositeEdges Flipped AllCorners Twisted StraightCorners Twisted NeighboursCorners Twisted DiagonalCorners Twisted PositiveCorners Twisted NegativeCorners Twisted RegularCorners Twisted IrregularCorners Moved Straight - Twisted StraightCorners Moved Straight - Twisted NeighboursCorners Moved Straight - Twisted DiagonalCorners Moved Straight - Twisted PositiveCorners Moved Straight - Twisted NegativeCorners Moved Straight - Twisted IrregularCorners Moved Straight - Twisted Regular
Twisting Corners & Flipping EdgesCorners Moved StraightCorners Moved DiagonalCorners Moved Positive - the long arm is the 'arrowpeak'Corners Moved Negative - the long arm is the 'arrowpeak'Corners Moved ParallelCorners Moved CrossFlipping EdgesEdges Moved StraightEdges Moved DiagonalEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved ParallelEdges Moved Crossbest browser - Bester Browsercolor distribution - Farbverteilung
from intact cube to intact cube sequencesTurning MiddlestonesCorners Twisted StraightCorners Twisted NeighboursCorners Twisted DiagonalCorners Twisted PositiveCorners Twisted NegativeCorners Twisted RegularCorners Twisted IrregularCorners Twisted Positive Mixed - webauthors sequencesCorners Twisted Positive - Edges Flipped Neighbours M1 - webauthors sequencesCorners Twisted Positive - Edges Flipped Neighbours P1 - webauthors sequencesCorners Twisted Positive - Edges Flipped Neighbours M2 - webauthors sequencesCorners Twisted Positive - Edges Flipped Neighbours P2 - webauthors sequencesCorners Twisted Positive - Edges Flipped Opposite 1 - webauthors sequencesCorners Twisted Positive - Edges Flipped Opposite 2 - webauthors sequencesCorners Twisted Positive- Edges Flipped All - webauthors sequences
Corners Twisted Positive Clear - edges and corners are fixCorners Twisted Positive Mixed - only corners are fixCorners Twisted Positive Mixed - no position is sureCorners Twisted Positive Mixed - webauthors sequences1 situationEdges Flipped NeighboursEdges Flipped OppositeEdges Flipped AllEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved Parallel
Corners Twisted Positive- Edges Flipped All - edges and corners are fixCorners Twisted Positive- Edges Flipped All - only corners are fixCorners Twisted Positive- Edges Flipped All - no position is sureCorners Twisted Positive- Edges Flipped All - webauthors sequences1 situation
A0CTTp1 EFAr'R²UR'UrU²r'UM'
r' R² U R' U r U² r' U R' r (10,13)
r'R²UR'UrU²r'UR'rBob Burton's speed sequences 38
r' R² (U R' U) r U² (r' U R') r (10,13)
B0CTTp2 EFAFURU'R'F'RBUB'U'R'JF-system compared by web authors - JF-System-Vergleich über Web-Autoren
F U R U' R' F' R B U B' U' R' (12,12) Ron van Bruchem
C0CTTp3 EFAymFL'U²LFR'FL'R²JF-system compared by web authors - JF-System-Vergleich über Web-Autoren
y R' L F L' U² L F R' F R² L' (11,13) Ron van Bruchem
D0CTTp4 EFAfRUR'U'f'U'FRUR'U'F'U'
f · R U R' U' · f' U' F · R U R' U' · F' (13) BobBurton OLL 11
fRUR'U'f'U'FRUR'U'F'
f (R U R' U') f' U' F (R U R' U') F' (13)
go to the top of the site
A1CTTp1 EFAyr'R²UR'UrU²r'UR'rJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
(y') r' R² U R' U r U² r' U R' r (9,12) Dan Harris
A2L'R²BR'BLU²L'BmJFVergleich über Web-Autoren
L'-R² B R' B L - U² L' - B R'L (9,13)
A3L'lUl'U²lUL'UL²R'JF-system compared by web authors - JF-System-Vergleich über Web-Autoren
(L'(l M) U (l' M') U² (l M) U) (L' U L²)R' (11,13) Peter Jansen
A4r'R²UR'UrU²r'UM'
r' R² U R' U r U² r' U M' (10,13) Peter Jansen
A5r'R²UR'UrU²r'UR'rJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
r' R² (U R' U) r U² (r' U R') r (11,13) Dennis Nilsson
B1CTTp2 EFA
C1CTTp3 EFAR'rUr'U²rUR'UR²r'JF-system compared by web authors - JF-System-Vergleich über Web-Autoren
R' r U r' U² r U R' U R² r' (11,13) Dennis Nilsson
D1CTTp4 EFARU²x'RU'R'dRURU'RB'JF-system compared by web authors - JF-System-Vergleich über Web-Autoren
(R U²) x' (R U' R' (D E)) (R U) ((R U' R) B') (12,13) Peter Jansen
D2fRUR'U'f'U'FRUR'U'F'JF-system compared by web authors - JF-System-Vergleich über Web-Autoren
Fw R U R' U' Fw' - U' - F R U R' U' F' (13) Shotaro Macky Makisumi
D3fRUR'U'f'U'FRUR'U'F'JF-system compared by web authors - JF-System-Vergleich über Web-Autoren
f (R U R' U') f' U' F (R U R' U') F' (13) Dennis Nilsson
  english discussion about mentioned sequences (back to top)
go to the top of the site
deutsche Erörterung von Zugfolgen (zurück nach oben)  
    CTTp4 EFAfRUR'U'f'U'FRUR'U'F'U'    
   
This lucky combination is in itself a repeating one. But using first center-outer-slice turn and then outer-slice-move there is no chance to speak about "true" coummutators. But although the two parts of the sequence are divided by this little difference this distinction makes memorizing even easy.

   
Diese glückliche Folge besteht eigentlich aus einerWiederholung. Da jedoch zuerst eine Mittel-Außen-Schicht-Drehung durchgeführt wird und darauf die Wiederholung mit einer Außenschicht-Operation stattfindet, kann man eigentlich nur von "unechten" Kommutatoren sprechen. Dennoch, selbst dieser kleine Unterschied stellt zum Memorieren eigentlich kein Hindernis dar.

   
07/10/2007 10.07.2007