NavigationMatrixPatterns - MusterSolution - Lösungsolutions for higher cubes and other types - Lösungen für größere Würfel und andere TypenLinksspeedcubing - Schnelldrehendiary - Tagebuchpoetry - Poesiequicklink speedcubing - Schnellzugriff Schnelldrehenagainst righteous - gegen Rechtsabout me - über michmail to Admin - email an den AdministratorImpressumJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
Deutsch 5D at-Symmetrie - entworfen von Reidenglish 5D at-symmetrie - by Reid
Corners Moved Straight - Edges Moved Straight 1Corners Moved Straight - Edges Moved Straight 2Corners Moved Straight - Edges Moved Diagonal P1Corners Moved Straight - Edges Moved Diagonal P2Corners Moved Straight - Edges Moved Diagonal M2Corners Moved Straight - Edges Moved Diagonal M1CMD1 EMS1CMD2 EMS1Corners Moved Diagonal 2 - Edges Moved Diagonal P1Corners Moved Diagonal 1 - Edges Moved Diagonal P1Corners Moved Positive - the long arm is the 'arrowpeak'Corners Moved Negative - the long arm is the 'arrowpeak'Corners Moved ParallelCorners Moved CrossEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved ParallelEdges Moved CrossG-Permutation - Nose UpG-Permutation - Hand UpG-Permutation - Hand DownG-Permutation - Nose DownEdges Flipped NeighboursEdges Flipped OppositeEdges Flipped AllCorners Twisted StraightCorners Twisted NeighboursCorners Twisted DiagonalCorners Twisted PositiveCorners Twisted NegativeCorners Twisted RegularCorners Twisted IrregularCorners Moved Straight - Twisted StraightCorners Moved Straight - Twisted NeighboursCorners Moved Straight - Twisted DiagonalCorners Moved Straight - Twisted PositiveCorners Moved Straight - Twisted NegativeCorners Moved Straight - Twisted IrregularCorners Moved Straight - Twisted Regular
Twisting Corners & Flipping EdgesCorners Moved StraightCorners Moved DiagonalCorners Moved Positive - the long arm is the 'arrowpeak'Corners Moved Negative - the long arm is the 'arrowpeak'Corners Moved ParallelCorners Moved CrossFlipping EdgesEdges Moved StraightEdges Moved DiagonalEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved ParallelEdges Moved Crossbest browser - Bester Browsercolor distribution - Farbverteilung
patterns by opposite swap - Muster durch gegenseitigen Tauschpattern index - Muster Indexpatterns by two axis swap - Muster durch 2-Achsen-Tauschpattern index - Muster Indexpatterns on two hemispheres by 1 axis cycle - Muster auf 2 Orientierungen, 1 Achsepattern index - Muster Index4 site cycle by 1 axis - Drehung von 4 Seiten durch 1 Achsepattern index - Muster Indexcycle of 6 sites by 1 axis - Drehung von 6 Seiten um 1 Achsepattern index - Muster Indexcheating swaps - betrügerisches Tauschenpattern index - Muster Indexpatterns by illegal swap - Muster durch illegalen Tauschpattern index - Muster Indexcollections - Sammlungenpattern index - Muster IndexDeclinations - Deklinationenpattern index - Muster IndexPrinting those Patterns
cheating swaps - betrügerisches Tauschen7D - odds / unregelmäßigepattern index - Muster Index7D - bars / Balkenpattern index - Muster Index7D - letters / Buchstabenpattern index - Muster Index7D - odds / unregelmäßigepattern index - Muster Index7D - flips of edges / Wendungen von Kantenpattern index - Muster Index7D - twists of corners / Eckendreherpattern index - Muster Indexirregular 3 bars outside - 3 irreguläre Außenbalkenpattern index - Muster Indexbs1 - flipping one edge by handpattern index - Muster Indexbs1 - flipping one edge by handpattern index - Muster Indexbs1 - flipping one edge by handpattern index - Muster Indexpattern index - Muster Index
AT-Symmetrie - by Reidpattern index - Muster IndexE-Symmetrie - by Reidpattern index - Muster IndexH-Symmetrie - by Reidpattern index - Muster IndexM-Symmetrie - by Reidpattern index - Muster IndexT-Symmetrie - by Reidpattern index - Muster IndexX-Symmetrie - by Reidpattern index - Muster IndexPatterns created by Reidpattern index - Muster Index
e-symm00
at-symm00at-symm00 back - at-symm00 hintenFUaR²BD²L'U²FL²UaF'
F U D R² B D² L' U² F L² U D F' (11,17)
at-symm01at-symm01 back - at-symm01 hintenFR²UFU'F'RB'RBU'L'ULF'
F R² U F U' F' R B' R B U' L' U L F' (15,16)
FaU²LU's²Ds²L'U²F'a
F B U² L U' F² B² D F² B² L' U² F' B' (10,20)
at-symm02at-symm02 back - at-symm02 hintenFRFR'FaU'LD'B'LBDF'L'Us
F R F R' F B U' L D' B' L B D F' L' U F B' (16,18)
F²RU'B'U²RsD'R²FDs²R'F²
F² R U' B' U² R F B' D' R² F D F² B² R' F² (14,22)
at-symm03at-symm03 back - at-symm03 hintenFU'Ls²R²D'B'R²Fm'D'R'D'
F U' L F² B² R² D' B' R² F R L' D' R' D' (13,19)
at-symm04at-symm04 back - at-symm04 hintenBD'L²F'U²L'F²D'R²F'D²L'B
B D' L² F' U² L' F² D' R² F' D² L' B (13,18)
at-symm05at-symm05 back - at-symm05 hintenBRB²U'R²U'L²B²L²DR'aF²U'F'
B R B² U' R² U' L² B² L² D R' L' F² U' F' (14,21)
at-symm06at-symm06 back - at-symm06 hintenBDB'R'U'L'U'R'aFaeFUaBU²
B D B' R' U' L' U' R' L' F B U' D F U D B U² (14,19)
FB²U'FD'F'R'FR'eBR²D²R²s
F B² U' F D' F' R' F R' U' D B R² D² R² L² (13,21)
at-symm07at-symm07 back - at-symm07 hintenFLU'L'sUB'L²'RD'R'FDRD²s
F L U' L' F B' U B' R L² D' R' F D R U² D² (14,20)
at-symm08at-symm08 back - at-symm08 hintenFL'U²BR²D²L²eR's'UD²'BRBD'
F L' U² B R² D² L² U' D R' F' B U D² B R B D' (23,18)
at-symm09at-symm09 back - at-symm09 hintenBRDmUas²DB²D²BL'B'U'FU'
B R D R' L U D F² B² D B² D² B L' B' U' F U' (15,22)
at-symm10at-symm10 back - at-symm10 hintenFR'as'Us'L'UR'FU'RD'B²U'FD'FR'
F R' L' F' B U F' B L' U R' F U' R D' B² U' F D' F R' (18,22)
BR²U²B²DB'DRU'aLUF'UF²D²L²F
B R² U² B² D B' D R U' D' L U F' U F² D² L² F ((17,24)
at-symm11at-symm11 back - at-symm11 hintenFD²RU'FR'B'D'L²F'U'aL²BLF²U²D'
F D² R U' F R' B' D' L² F' U' D' L² B L F² U² D' (16,23)
at-symm12at-symm12 back - at-symm12 hintenFUBUF'B²U'B'R'B'e'mFUBR'B'L²
F U B U F' B² U' B' R' B' U D' R' L F U B R' B' L² (20,22)
FD'FU²'Ds²Um'D'FLB'm'U'D²F²
F D' F U² D F² B² U R L' D' F L B' R L' U' D² F² (14,24)
at-symm13at-symm13 back - at-symm13 hintenFRUF²U'aFR'BDRU²RB'DB'Dm'
F R U F² U' D' F R' B D R U² R B' D B' D R L' (17,21)
at-symm14at-symm14 back - at-symm14 hintenFLBDL'F'LBUL'F'D²sBRaF
F L B D L' F' L B U L' F' U² D² B R L F (15,19)
at-symm15at-symm15 back - at-symm15 hintenBL'FaU'R'F'U'B'U'mD'B'D'F'R'D'LB'
B L' F B U' R' F' U' B' U' R' L D' B' D' F' R' D' L B' (18,20)
FDR²FL²'Rs²D²sRF'R²D'F'
F D R² F R L² F² B² U² D² R F' R² D' F' (12,22)
1 english discussion about mentioned sequences (back to top) go to the top of the site deutsche Erörterung von Zugfolgen (zurück nach oben)  
         
   


AT-symmetric positions

There are 4 different AT symmetry groups; each preserves one of the corners of the cube (and therefore also the opposite corner). Here we fix the UFR (and thus also the DLB) corner. There are 48 positions that are invariant under all such symmetries; 16 of them have more symmetry, namely T-symmetry, and 4 of these even have M-symmetry. The other 32 positions pair up into 16 patterns, as shown. I have even calculated all minimal maneuvers, using my optimal cube solver.

Reid

   


AT-symmetrische Stellungen

Hier sind 4 verschiedene AT-Symmetrie-Gruppen vorhanden; jede beinhaltet eine der Ecken des Würfels (und damit auch die gegenüberliegende Ecke). Hier behandeln wir die die UFR (und damit auch die DLB)-Ecke. Hier gibt es 48 Stellungen die unter solchen Symmetrien unveränderlich sind; 16 von ihnen haben mehrere Symmetrien, namentlich die T-Symmetrie, und 4 davon haben M-Symmetrie. Die anderen 32 Stellungen zerfallen in 16 Muster, wie hier gezeigt. Auch habe ich alle minimalen Operationen unter Verwendung meines optimal cube solver errechnet.

Reid

   
01/14/2009 14.01.2009
       
             

 

 

 

 

 

 

 

 

 

 

 

 

mail to Admin - email an den Administrator