NavigationMatrixPatterns - MusterSolution - Lösungsolutions for higher cubes and other types - Lösungen für größere Würfel und andere TypenLinksspeedcubing - Schnelldrehendiary - Tagebuchpoetry - Poesiequicklink speedcubing - Schnellzugriff Schnelldrehenagainst righteous - gegen Rechtsabout me - über michmail to Admin - email an den AdministratorImpressumJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
Deutsch 5D t-Symmetrie - entworfen von Reidenglish 5D t-symmetrie - by Reid
Corners Moved Straight - Edges Moved Straight 1Corners Moved Straight - Edges Moved Straight 2Corners Moved Straight - Edges Moved Diagonal P1Corners Moved Straight - Edges Moved Diagonal P2Corners Moved Straight - Edges Moved Diagonal M2Corners Moved Straight - Edges Moved Diagonal M1CMD1 EMS1CMD2 EMS1Corners Moved Diagonal 2 - Edges Moved Diagonal P1Corners Moved Diagonal 1 - Edges Moved Diagonal P1Corners Moved Positive - the long arm is the 'arrowpeak'Corners Moved Negative - the long arm is the 'arrowpeak'Corners Moved ParallelCorners Moved CrossEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved ParallelEdges Moved CrossG-Permutation - Nose UpG-Permutation - Hand UpG-Permutation - Hand DownG-Permutation - Nose DownEdges Flipped NeighboursEdges Flipped OppositeEdges Flipped AllCorners Twisted StraightCorners Twisted NeighboursCorners Twisted DiagonalCorners Twisted PositiveCorners Twisted NegativeCorners Twisted RegularCorners Twisted IrregularCorners Moved Straight - Twisted StraightCorners Moved Straight - Twisted NeighboursCorners Moved Straight - Twisted DiagonalCorners Moved Straight - Twisted PositiveCorners Moved Straight - Twisted NegativeCorners Moved Straight - Twisted IrregularCorners Moved Straight - Twisted Regular
Twisting Corners & Flipping EdgesCorners Moved StraightCorners Moved DiagonalCorners Moved Positive - the long arm is the 'arrowpeak'Corners Moved Negative - the long arm is the 'arrowpeak'Corners Moved ParallelCorners Moved CrossFlipping EdgesEdges Moved StraightEdges Moved DiagonalEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved ParallelEdges Moved Crossbest browser - Bester Browsercolor distribution - Farbverteilung
patterns by opposite swap - Muster durch gegenseitigen Tauschpattern index - Muster Indexpatterns by two axis swap - Muster durch 2-Achsen-Tauschpattern index - Muster Indexpatterns on two hemispheres by 1 axis cycle - Muster auf 2 Orientierungen, 1 Achsepattern index - Muster Index4 site cycle by 1 axis - Drehung von 4 Seiten durch 1 Achsepattern index - Muster Indexcycle of 6 sites by 1 axis - Drehung von 6 Seiten um 1 Achsepattern index - Muster Indexcheating swaps - betrügerisches Tauschenpattern index - Muster Indexpatterns by illegal swap - Muster durch illegalen Tauschpattern index - Muster Indexcollections - Sammlungenpattern index - Muster IndexDeclinations - Deklinationenpattern index - Muster IndexPrinting those Patterns
cheating swaps - betrügerisches Tauschen7D - odds / unregelmäßigepattern index - Muster Index7D - bars / Balkenpattern index - Muster Index7D - letters / Buchstabenpattern index - Muster Index7D - odds / unregelmäßigepattern index - Muster Index7D - flips of edges / Wendungen von Kantenpattern index - Muster Index7D - twists of corners / Eckendreherpattern index - Muster Indexirregular 3 bars outside - 3 irreguläre Außenbalkenpattern index - Muster Indexbs1 - flipping one edge by handpattern index - Muster Indexbs1 - flipping one edge by handpattern index - Muster Indexbs1 - flipping one edge by handpattern index - Muster Indexpattern index - Muster Index
AT-Symmetrie - by Reidpattern index - Muster IndexE-Symmetrie - by Reidpattern index - Muster IndexH-Symmetrie - by Reidpattern index - Muster IndexM-Symmetrie - by Reidpattern index - Muster IndexT-Symmetrie - by Reidpattern index - Muster IndexX-Symmetrie - by Reidpattern index - Muster IndexPatterns created by Reidpattern index - Muster Index
e-symm00
at-symm00at-symm00 back - at-symm00 hintenFUaR²BD²L'U²FL²UaF'
F U D R² B D² L' U² F L² U D F' (11,17)
at-symm01at-symm01 back - at-symm01 hintenFR²UFU'F'RB'RBU'L'ULF'
F R² U F U' F' R B' R B U' L' U L F' (15,16)
FaU²LU's²Ds²L'U²F'a
F B U² L U' F² B² D F² B² L' U² F' B' (10,20)
at-symm02at-symm02 back - at-symm02 hintenFRFR'FaU'LD'B'LBDF'L'Us
F R F R' F B U' L D' B' L B D F' L' U F B' (16,18)
F²RU'B'U²RsD'R²FDs²R'F²
F² R U' B' U² R F B' D' R² F D F² B² R' F² (14,22)
at-symm03at-symm03 back - at-symm03 hintenFU'Ls²R²D'B'R²Fm'D'R'D'
F U' L F² B² R² D' B' R² F R L' D' R' D' (13,19)
at-symm04at-symm04 back - at-symm04 hintenBD'L²F'U²L'F²D'R²F'D²L'B
B D' L² F' U² L' F² D' R² F' D² L' B (13,18)
at-symm05at-symm05 back - at-symm05 hintenBRB²U'R²U'L²B²L²DR'aF²U'F'
B R B² U' R² U' L² B² L² D R' L' F² U' F' (14,21)
at-symm06at-symm06 back - at-symm06 hintenBDB'R'U'L'U'R'aFaeFUaBU²
B D B' R' U' L' U' R' L' F B U' D F U D B U² (14,19)
FB²U'FD'F'R'FR'eBR²D²R²s
F B² U' F D' F' R' F R' U' D B R² D² R² L² (13,21)
at-symm07at-symm07 back - at-symm07 hintenFLU'L'sUB'L²'RD'R'FDRD²s
F L U' L' F B' U B' R L² D' R' F D R U² D² (14,20)
at-symm08at-symm08 back - at-symm08 hintenFL'U²BR²D²L²eR's'UD²'BRBD'
F L' U² B R² D² L² U' D R' F' B U D² B R B D' (23,18)
at-symm09at-symm09 back at-symm09 hintenBRDmUas²DB²D²BL'B'U'FU'
B R D R' L U D F² B² D B² D² B L' B' U' F U' (15,22)
at-symm10at-symm10 back - at-symm10 hintenFR'as'Us'L'UR'FU'RD'B²U'FD'FR'
F R' L' F' B U F' B L' U R' F U' R D' B² U' F D' F R' (18,22)
BR²U²B²DB'DRU'aLUF'UF²D²L²F
B R² U² B² D B' D R U' D' L U F' U F² D² L² F ((17,24)
at-symm11at-symm11 back - at-symm11 hintenFD²RU'FR'B'D'L²F'U'aL²BLF²U²D'
F D² R U' F R' B' D' L² F' U' D' L² B L F² U² D' (16,23)
at-symm12at-symm12 back - at-symm12 hintenFUBUF'B²U'B'R'B'e'mFUBR'B'L²
F U B U F' B² U' B' R' B' U D' R' L F U B R' B' L² (20,22)
FD'FU²'Ds²Um'D'FLB'm'U'D²F²
F D' F U² D F² B² U R L' D' F L B' R L' U' D² F² (14,24)
at-symm13at-symm13 back - at-symm13 hintenFRUF²U'aFR'BDRU²RB'DB'Dm'
F R U F² U' D' F R' B D R U² R B' D B' D R L' (17,21)
at-symm14at-symm14 back - at-symm14 hintenFLBDL'F'LBUL'F'D²sBRaF
F L B D L' F' L B U L' F' U² D² B R L F (15,19)
at-symm15at-symm15 back - at-symm15 hintenBL'FaU'R'F'U'B'U'mD'B'D'F'R'D'LB'
B L' F B U' R' F' U' B' U' R' L D' B' D' F' R' D' L B' (18,20)
FDR²FL²'Rs²D²sRF'R²D'F'
F D R² F R L² F² B² U² D² R F' R² D' F' (12,22)
  english discussion about mentioned sequences (back to top)
go to the top of the site
deutsche Erörterung von Zugfolgen (zurück nach oben)  
   
T-symmetric positions

There are 4 T-symmetry groups; each fixes one of the long diagonals of the cube. Here we fix the URF-DBL diagonal. There are 16 positions that are invariant under all symmetries that fix this diagonal; 4 of which have more symmetry, namely M-symmetry. Here are minimal maneuvers for the other 12 positions. I have even calculated all minimal maneuvers, using my optimal cube solver.

Reid

   
T-symmetrische Stellungen

Es gibt 4 T-symmetrische Gruppen; jede richtet eine der langen Diagonalen des Würfels. Hier wird die URF-DBL-Diagonale behandelt. Es sind 16 Möglichkeiten gegeben, die unter allen Symmetrien, die diese Achse betreffen, unveränderlich sind; 4 haben mehrere Symmetrien, namentlich die M-Symmetrie. Für die anderen 12 Stellungen sind hier minimale Operationen angezeigt. Dazu habe ich auch noch alle minimalen Sequenzen mit Hilfe meines optimal cube solver ermittelt.

Reid

   
  01/14/2009 14.01.2009  
       

 

 

 

 

 

 

 

 

 

 

 

 

mail to Admin - email an den Administrator