NavigationMatrixPatterns - MusterSolution - Lösungsolutions for higher cubes and other types - Lösungen für größere Würfel und andere TypenLinksspeedcubing - Schnelldrehendiary - Tagebuchpoetry - Poesiequicklink speedcubing - Schnellzugriff Schnelldrehenagainst righteous - gegen Rechtsabout me - über michmail to Admin - email an den AdministratorImpressumJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
Deutsch 5D x-Symmetrie - entworfen von Reidenglish 5D x-symmetrie - by Reid
Corners Moved Straight - Edges Moved Straight 1Corners Moved Straight - Edges Moved Straight 2Corners Moved Straight - Edges Moved Diagonal P1Corners Moved Straight - Edges Moved Diagonal P2Corners Moved Straight - Edges Moved Diagonal M2Corners Moved Straight - Edges Moved Diagonal M1CMD1 EMS1CMD2 EMS1Corners Moved Diagonal 2 - Edges Moved Diagonal P1Corners Moved Diagonal 1 - Edges Moved Diagonal P1Corners Moved Positive - the long arm is the 'arrowpeak'Corners Moved Negative - the long arm is the 'arrowpeak'Corners Moved ParallelCorners Moved CrossEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved ParallelEdges Moved CrossG-Permutation - Nose UpG-Permutation - Hand UpG-Permutation - Hand DownG-Permutation - Nose DownEdges Flipped NeighboursEdges Flipped OppositeEdges Flipped AllCorners Twisted StraightCorners Twisted NeighboursCorners Twisted DiagonalCorners Twisted PositiveCorners Twisted NegativeCorners Twisted RegularCorners Twisted IrregularCorners Moved Straight - Twisted StraightCorners Moved Straight - Twisted NeighboursCorners Moved Straight - Twisted DiagonalCorners Moved Straight - Twisted PositiveCorners Moved Straight - Twisted NegativeCorners Moved Straight - Twisted IrregularCorners Moved Straight - Twisted Regular
Twisting Corners & Flipping EdgesCorners Moved StraightCorners Moved DiagonalCorners Moved Positive - the long arm is the 'arrowpeak'Corners Moved Negative - the long arm is the 'arrowpeak'Corners Moved ParallelCorners Moved CrossFlipping EdgesEdges Moved StraightEdges Moved DiagonalEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved ParallelEdges Moved Crossbest browser - Bester Browsercolor distribution - Farbverteilung
patterns by opposite swap - Muster durch gegenseitigen Tauschpattern index - Muster Indexpatterns by two axis swap - Muster durch 2-Achsen-Tauschpattern index - Muster Indexpatterns on two hemispheres by 1 axis cycle - Muster auf 2 Orientierungen, 1 Achsepattern index - Muster Index4 site cycle by 1 axis - Drehung von 4 Seiten durch 1 Achsepattern index - Muster Indexcycle of 6 sites by 1 axis - Drehung von 6 Seiten um 1 Achsepattern index - Muster Indexcheating swaps - betrügerisches Tauschenpattern index - Muster Indexpatterns by illegal swap - Muster durch illegalen Tauschpattern index - Muster Indexcollections - Sammlungenpattern index - Muster IndexDeclinations - Deklinationenpattern index - Muster IndexPrinting those Patterns
cheating swaps - betrügerisches Tauschen7D - odds / unregelmäßigepattern index - Muster Index7D - bars / Balkenpattern index - Muster Index7D - letters / Buchstabenpattern index - Muster Index7D - odds / unregelmäßigepattern index - Muster Index7D - flips of edges / Wendungen von Kantenpattern index - Muster Index7D - twists of corners / Eckendreherpattern index - Muster Indexirregular 3 bars outside - 3 irreguläre Außenbalkenpattern index - Muster Indexbs1 - flipping one edge by handpattern index - Muster Indexbs1 - flipping one edge by handpattern index - Muster Indexbs1 - flipping one edge by handpattern index - Muster Indexpattern index - Muster Index
AT-Symmetrie - by Reidpattern index - Muster IndexE-Symmetrie - by Reidpattern index - Muster IndexH-Symmetrie - by Reidpattern index - Muster IndexM-Symmetrie - by Reidpattern index - Muster IndexT-Symmetrie - by Reidpattern index - Muster IndexX-Symmetrie - by Reidpattern index - Muster IndexPatterns created by Reidpattern index - Muster Index
e-symm00
x-symm00x-symm00 back - x-symm00 hintenF²m'D²F²D²mF²D²
F² RL' D² F² D² R'L F² D² (8,16)
x-symm01x-symm01 back - x-symm01 hintenUF'aR²U'as'UaR²FaD'
U F'B' R² U'D' F'B UD R² FB D' (9,16)
UF²U²F²RaF²U²F²U²R'aU
U F² U² F² R L F² U² F² U² R' L' U (11,20)
x-symm02x-symm02 back - x-symm02 hintenUFaR²UasU'aR²F'aD'
U FB R² UD FB' U'D' R² F'B' D' (9,16)
UFaU²R²U²R²F'aR²U²R²U
U FB U² R² U² R² F'B' R² U² R² U (11,20)
x-symm03x-symm03 back - x-symm03 hintens²e'R²se
F²'B² UD' R²'L² U'D (4,12)
x-symm04x-symm04 back - x-symm04 hintenF²R²s²R²B²
F² R² F²'B² R² B² (5,12)
x-symm05x-symm05 back - x-symm05 hintenUF'aR'aF'aRaFaRaU'
U F'B' R'L' F'B' RL FB RL U' (8,14)
UF²U²F²RaB²D²B²U²R'aU
U F² U² F² RL B² D² B² U² R'L' U (11,20)
x-symm06x-symm06 back - x-symm06 hintenUFaRaFaR'aF'aR'aU'
U FB RL FB R'L' F'B' R'L' U' (8,14)
UFaU²R²D²R²F'aL²U²L²U
U FB U² R² D² R² F'B' L² U² L² U (11,20)
x-symm07x-symm07 back - x-symm07 hintenFR'UB²L'Fe'L'BR²U'FL'e
F R' U B² L' F UD' L' B R² U' F L' U'D (14,18)
x-symm08x-symm08 back - x-symm08 hintenFU'FR'DF'DF'RaB'UB'UL'BD'BUa
F U' F R' D F' D F' RL B' U B' U L' B D' B UD (18,20)
F²RsDB²D's²UF²U'sR'B²
F² R FB' D B² D' F²'B² U F² U' FB' R' B² (13,22)
x-symm09x-symm09 back - x-symm09 hintenFRFD's'RF'U'B'm'FU'aF'aR²U
F R F D' F'B R F' U' B' RL' F U'D' F'B' R² U (15,20)
UF'aRF²e'L²F'U'aF²R'em'D²
U F'B' R F² UD' L² F' U'D' F² R' U'D RL' D² (13,22)
x-symm0Ax-symm0A back - x-symm0A hintenFRDR'F'UB'LeL'FD'BRU'R'B'
F R D R' F' U B' L U'D L' F D' B R U' R' B' (17,18)
x-symm0Bx-symm0B back - x-symm0B hintenFR'BmU'm'UBm'D'B'LF'
F R' B R'L U' RL' U B RL' D' B' L F' (13,16)
FR²F²eR'D²sL'F²L²eF
F R² F² U'D R' U²'D² L' F² L² U'D F (11,20)
x-symm0Cx-symm0C back - x-symm0C hintenFR'aU'smF²U²FaD'RaU²B'
F R'L' U' FB' R' L F² U² FB D' RL U² B' (12,20)
FU²s²mF²Us²UF²m'D²F
F U² F²'B² R'L F² U F²'B² U F² RL' D² F (12,24)
x-symm0Dx-symm0D back - x-symm0D hintenUsU'RF'R'BR'U²R'FR'B'RU's'U
U FB' U' R F' R' B R' U² R' F R' B' R U' F'B U (17,20)
UF²R'aFD²mB²D'F'aR'e'mU²
U F² R'L' F D² R'L B² D' F'B' R' UD' R'L U² (13,22)
x-symm0Ex-symm0E back - x-symm0E hintenFaRF²eR²B'U'aL'e'mUR²
FB R F² U'D R² B' U'D' L' UD' R'L U R² (12,20)
x-symm0Fx-symm0F back - x-symm0F hintenFaUaR²sUaFa
FB UD R²'L² UD FB (5,12)
x-symm0Gx-symm0G back - x-symm0G hintenD²s
U²'D² (2,4)
x-symm0Hx-symm0H back - x-symm0H hintenUFaR²Uas'U'aR²F'aD'
U FB R² UD F'B U'D' R² F'B' D' (9,16)
UFaD²R²D²R²F'aR²D²R²U
U FB D² R² D² R² F'B' R² D² R² U (11,20)
x-symm0Ix-symm0I back - x-symm0I hintenUF'aR²U'asUaR²FaD'
U F'B' R² U'D' FB' UD R² FB D' (9,16)
UF²D²F²RaF²D²F²D²R'aU
U F² D² F² RL F² D² F² D² R'L' U (11,20)
x-symm0Jx-symm0J back - x-symm0J hintenF²R²s²R²B²D²s
F² R² F²'B² R² B² U²'D² (6,16)
x-symm0Kx-symm0K back - x-symm0K hintens²e'R²se'
F²'B² UD' R²'L² UD' (4,12)
x-symm0Lx-symm0L back - x-symm0L hintenUFaR'aFaR'aFaR'aU'
U FB R'L' FB R'L' FB R'L' U' (8,14)
UFaD²R²U²R²F'aL²D²L²U
U FB D² R² U² R² F'B' L² D² L² U (11,20)
x-symm0Mx-symm0M back - x-symm0M hintenUF'aRaF'aRaF'aRaU'
U F'B' RL F'B' RL F'B' RL U' (8,14)
UF²D²F²RaB²U²B²D²R'aU
U F² D² F² RL B² U² B² D² R'L' U (11,20)
x-symm0Nx-symm0N back - x-symm0N hintenFR'aU'L²B²Ras'mD'RaU²F'
F R'L' U' L² B² R L F'B R'L D' RL U² F' (12,20)
x-symm0Ox-symm0O back - x-symm0O hintenFU²s²m'B²U'R²sUF²m'D²B'
F U² F²'B² RL' B² U' R²'L² U F² RL' D² B' (12,24)
x-symm0Ox-symm0O back - x-symm0O hintenFR²DF'U'RD²sL'UBD'L²B'
F R² D F' U' R U²'D² L' U B D' L² B' (13,18)
x-symm0Px-symm0P back - x-symm0P hintenFUR'UL'U'LDRaURD'R'DL'DB
F U R' U L' U' L D RL U R D' R' D L' D B (17,18)
FaRF²eR²B'U'aR'em'DL²
FB R F² U'D R² B' U'D' R' U'D RL' D L² (12,20)
x-symm0Qx-symm0Q back - x-symm0Q hintenFR's'L'FU'FaU²FaU'R'Bm'FR'
F R' F'B L' F U' FB U² FB U' R' B RL' F R' (15,20)
UF'aRF²e'L²F'U'aF²R'em'U²
U F'B' R F² UD' L² F' U'D' F² R' U'D RL' U² (13,22)
x-symm0Rx-symm0R back - x-symm0R hintenFU'RBRsU'FeL'Dm'B²R'UF'
F U' R B R FB' U' F U'D L' D RL' B² R' U F' (16,20)
F²RsDB²U'R²sDB²U's'L'F²
F² R FB' D B² U' R²'L² D B² U' F'B L' F² (13,22)
x-symm0Sx-symm0S back - x-symm0S hintenFR²U'RUF'e'LU'F'UF²L'e'
F R² U' R U F' UD' L U' F' U F² L' UD' (14,18)
x-symm0Tx-symm0T back - x-symm0T hintenFR's'L'FUFaU²FaUL'FmBL'
F R' F'B L' F U FB U² FB U L' F R'L B L' (15,20)
sRFaDL²sU²L'UaR²F²B'm'
FB' R FB D L² FB' U² L' UD R² F²B' RL' (12,22)
x-symm0Ux-symm0U back - x-symm0U hintensURDB'e'RD'F'D'RB²U'aR'aU
FB' U R D B' UD' R D' F' D' R B² U'D' R'L' U (15,20)
UF²R'aFD²mB²D'F'aR'e'mD²
U F² R'L' F D² R'L B² D' F' B' R' UD' R'L D² (13,22)
x-symm0Vx-symm0V back - x-symm0V hintenUas²e's²D²
UD F²'B² UD' F²'B² D² (5,14)
F²R²s²R²F²R²s
F² R² F²'B² R² F² R²'L² (6,16)
x-symm0Wx-symm0W back - x-symm0W hintens²e's²e
F²'B² UD' F²'B² U'D (4,12)
x-symm0Xx-symm0X back - x-symm0X hintenFaRaFaR'aF'aR'aU's²R²sD'
FB RL FB R'L' F'B' R'L' U' F²'B² R²'L² D' (10,22)
FaRs²D²sL'F'aU²R'aF²R'aU²
FB R F²'B² U²'D² L' F'B' U² R'L' F² R'L' U² (11,24)
x-symm0Yx-symm0Y back - x-symm0Y hintenFRFLDF'L'sms'RFUL'B'LF
F R F L D F' L' FB' R'L F'B R F U L' B' L F (17,20)
F²UFaD²R²B²D²L²F'aU²R²DF²
F² U F B D² R² B² D² L² F'B' U² R² D F² (14,26)
x-symm0Zx-symm0Z back - x-symm0Z hintenU²s²R²sD²
U² F²'B² R²'L² D² (4,12)
x-symm10x-symm10 back - x-symm10 hintens²R²s
F²'B² R²'L² (2,8)
x-symm11x-symm11 back - x-symm11 hintenFU'B'D'F²U'F'U'D²FU²F'D'FU'B'L²D'
F U' B' D' F² U' F' U'D² F U² F' D' F U' B' L² D' (17,22)
F²R²sURaF²UaL²UaB²RaUB²
F² R²'L² U RL F² UD L² UD B² RL U B² (12,24)
x-symm12x-symm12 back - x-symm12 hintenF²UFaD²FaR²sD'B²U'aR²U'a
F² U FB D² FB R²'L² D' B² U'D' R² U'D' (11,22)
x-symm13x-symm13 back - x-symm13 hintenUFRUF'B²RFD'R'F'L'F²RDL²'RD²
U F R U F'B² R F D' R' F' L' F² R D RL²' D² (16,22)
U²FU²mF²U'B²mD²B'D²sBD²
U² F U² R'L F² U' B² R'L D² B' U²'D² B D² (13,24)
x-symm14x-symm14 back - x-symm14 hintenFU²mF²U'B²mD²B'D²sB
F U² R'L F² U' B² R'L D² B' U²'D² B (11,20)
x-symm15x-symm15 back - x-symm15 hintenFaRF²e'L²F'UaLem'U'L²
FB R F² UD' L² F' UD L U'D RL' U' L² (12,20)
x-symm16x-symm16 back - x-symm16 hintenFaRsmB'U'aR'U²B²U²RasU
FB R FB' R'L B' U'D' R' U² B² U² RL FB' U (13,22)
x-symm17x-symm17 back - x-symm17 hintenFUasU²mB'msR'U'aF'
F UD FB' U² R'L B' R'L FB' R' U'D' F' (11,18)
FR²UaReF²m'Dm'U²R²F'
F R² UD R U'D F² RL' D RL' U² R² F' (12,20)
x-symm18x-symm18 back - x-symm18 hintenFRaUB²R²e'R'ae'RU'aL²F'
F RL U B² R² UD' R' L' UD' R U'D' L² F' (12,20)
FR²e'B²LR²'s²L'B²eR²F
F R² UD' B² R²'L F²'B² L' B² U'D R² F (11,22)
x-symm19x-symm19 back - x-symm19 hintenFaRsmB'R²U'aR²'LU²sR²U
FB R FB' R'L B' R² U'D' R²'L U² FB' R² U (12,22)
x-symm1Ax-symm1A back - x-symm1A hintenFR'FL'R²B'DR'U'BLF'R²B²L²D'F²
F R' F R²L' B' D R' U' B L F' R² B² L² D' F² (16,22)
x-symm1Bx-symm1B back - x-symm1B hintens²e's²e'
F²'B² UD' F²'B² UD' (4,12)
x-symm1Cx-symm1C back - x-symm1C hintenUas²e's²U²
UD F²'B² UD' F²'B² U² (5,14)
x-symm1Dx-symm1D back - x-symm1D hintenFaRs²U²RaB²RaU²LFaR²
FB R F²'B² U² RL B² RL U² L FB R² (11,22)
FaRF²R²B²U²L²F²R²U²L'FaL²
FB R F² R² B² U² L² F² R² U² L' FB L² (13,24)
x-symm1Ex-symm1E back - x-symm1E hintenFaR'aFaUs²R²sDRaF'aRa
FB R'L' FB U F²'B² R²'L² D RL F'B' RL (10,22)
FaRs²D²sL'F'aU²R'aF²R'aD²
FB R F²'B² U²'D² L' F'B' U² R'L' F² R'L' D² (11,24)
x-symm1Fx-symm1F back - x-symm1F hintenU²s²R²sU²
U² F²'B² R²'L² U² (4,12)
x-symm1Gx-symm1G back - x-symm1G hintenFaRF²R'aD²s²RaB²LFaL²
FB R F² R'L' D² F²'B² RL B² L FB L² (11,22)
F²UF²RU²s²R²sU²LB²DB²
F² U F² R U² F²'B² R²'L² U² L B² D B² (12,24)
x-symm1Hx-symm1H back - x-symm1H hintenFU'FL'F'DF'meFmDR'DL'F'LU'L
F U' F L' F' D F' R' L U'D F R' L D R' D L' F' L U' L (19,22)
FaRs²D²sL'U²R²U²FaU²R²U²R²
F B R F²'B² U²'D² L' U²R² U² FB U² R² U² R² (13,28)
x-symm1Ix-symm1I back - x-symm1I hintenFU²mB²Us²U'F²mU²B'
F U² R'L B² U F²'B² U' F² R'L U² B' (11,20)
x-symm1Jx-symm1J back - x-symm1J hintenFUaRemUs'R²s'mU²B'
F UD R U'D R'L U F'B R² F'B R'L U² B' (12,20)
FRF²RULDB²U'R'Ds²D²L²B'
F R F² R U L D B² U' R' D F²'B² D² L² B' (15,22)
x-symm1Kx-symm1K back - x-symm1K hintenFRaUR'D'F'aULF'aRF'aD'FRUR
F RL U R' D' F'B' U L F'B' R F'B' D' F R U R (16,20)
FU'LULF²DB²eBD'R'B'L²U'BL²
F U' L U L F² D B² U'D B D' R' B' L² U' B L² (17,22)
x-symm1Lx-symm1L back - x-symm1L hintenFaRsmB'U'aLsD²F²L²F²U'
FB R FB' R'L B' U'D' L FB' D² F² L² F² U' (13,22)
x-symm1Mx-symm1M back - x-symm1M hintenFR²sF'U²mB²DF²m'U²B'
F R²'L² F' U² R'L B² D F² RL' U² B' (20,14 )
x-symm1Nx-symm1N back - x-symm1N hintenFUasU²mB'msR'U'aF'D²s
F UD FB' U² R'L B' R'L FB' R' U'D' F' U²'D² (12,22)
U²FR²sF'U²mB²DF²m'U²B'D²
U² F R²'L² F' U² R'L B² D F² RL' U² B' D² (13,24)
x-symm1Ox-symm1O back - x-symm1O hintenFaRsmB'U'aLsD²B²L²B²U'
FB R FB' R'L B' U'D' L FB' D² B² L² B² U' (13,22)
x-symm1Px-symm1P back - x-symm1P hintenFaRsmB'R²U'aLD²sL²U'
FB R FB' R'L B' R² U'D' L D² FB' L² U' (12,20)
x-symm1Qx-symm1Q back - x-symm1Q hintenFaUaRaFaUaRa
FB UD RL FB UD RL (6,12)
x-symm1Rx-symm1R back - x-symm1R hintenFaUaRaF'aU'aR'aD²s
FB UD RL F'B' U'D' R'L' U²'D² (7,16)
x-symm1Sx-symm1S back - x-symm1S hintenUF²m'sU²B²RaD²R²D'
U F² RL' FB' U² B² RL D² R² D' (10,18)
x-symm1Tx-symm1T back - x-symm1T hintenUF²ms'D²B²R'aU²R²D'
U F² R'L F'B D² B² R'L' U² R² D' (10,18)
x-symm1Ux-symm1U back - x-symm1U hintenFaU²Fam'FaD²R'aF²U'a
FB U² FB RL' FB D² R'L' F² U' D' (9,18)
sRas'R²B²L²U'aL²F²R²
FB' RL F'B R² B² L² U'D' L² F² R² (10,20)
x-symm1Vx-symm1V back - x-symm1V hintenFaUaRaFae'R²sD²R'a
FB UD RL FB UD' R²'L² D² R'L' (8,18)
sRas'R²F²R²UaR²B²R²
FB' RL F'B R² F² R² UD R² B² R² (10,20)
x-symm1Wx-symm1W back - x-symm1W hintenUF²RaFaRaUaF²U'
U F² RL FB RL UD F² U' (8,14)
x-symm1Xx-symm1X back - x-symm1X hintenUF²R'aF'aR'aU'aF²U'
U F² R'L' F'B' R'L' U'D' F² U' (8,14)
x-symm1Yx-symm1Y back - x-symm1Y hintenFURs'U²'DF'eRFeL'U'F'R²s
F U R F'B U²'D F' U'D R F U'D L' U' F' R²'L² (14,22)
x-symm1Zx-symm1Z back - x-symm1Z hintenFRBDFUBmF'D'sR'BR²D
F R B D F U B R'L F' D' FB' R' B R² D (15,18)
x-symm20x-symm20 back - x-symm20 hintenUF'e's'DFaR'U²s'L²D'R'aU
U F' UD' F'B D F B R' U² F'B L² D' R'L' U (13,20)
sRU²RD²R'e'FR²D²FR'aU²D'
FB' R U² R D² R' UD' F R² D² F R' L' U²D' (13,22)
x-symm21x-symm21 back - x-symm21 hintenFR²eB²LU'aFaR²Be'sUR'a
F R² U'D B² L U'D' FB R² B UD' FB' U R'L' (13,22)
x-symm22x-symm22 back - x-symm22 hintenFULUF'R'aUB'L'F'eB'U'aR²U'a
F U L U F' R'L' U B' L' F' U'D B' U'D' R² U'D' (15,20)
x-symm23x-symm23 back - x-symm23 hintenUFm's'L'U'aFD²m'F²DRaU
U F RL' F'B L' U'D' F D² RL' F² D RL U (13,20)
UFaR'U²F²R'e'BL²F'R²B'mD²
U FB R' U² F² R' UD' B L² F' R² B' R'L D² (14,22)
x-symm24x-symm24 back - x-symm24 hintenF²m'U²BR'aB²D'm'eRFaD
F² RL' U² B R'L' B² D' RL' U'D R FB D (12,20)
x-symm25x-symm25 back - x-symm25 hintenFaUaRaF'aU'aR'a
FB UD RL F'B' U'D' R'L' (6,12)
x-symm26x-symm26 back - x-symm26 hintenFaUaRaFaUaRaD²s
FB UD RL FB UD RL U²'D² (7,14)
x-symm27x-symm27 back - x-symm27 hintenUF²e'F'aR'aF'aD²B²U'
U F² UD' F'B' R'L' F'B' D² B² U' (9,16)
x-symm28x-symm28 back - x-symm28 hintenUF²e'FaRaFaU²B²U'
U F² UD' FB RL FB U²B² U' (9,16)
x-symm29x-symm29 back - x-symm29 hintenFU'B'L'B'UFe'LDR'B'R'D'LD²
F U' B' L' B' U F UD' L D R' B' R' D' L D² (16,18)
sRas'R²F²R²U'aL²F²L²
FB' RL F'B R² F² R² U'D' L² F² L² (10,20)
x-symm2Ax-symm2A back - x-symm2A hintenFaUaRaFaU²s²e'R'a
FB UD RL F B U² F²'B² UD' R'L' (8,18)
sRas'R²B²L²UaR²B²L²
FB' RL F'B R² B² L² UD R² B² L² (10,20)
x-symm2Bx-symm2B back - x-symm2B hintenUFaR'aUaF'aUaF'aU'
U FB R'L' UD F'B' UD F'B' U' (8,14)
UF²R'aF'aR'aU'aF²UD²'
U F² R'L' F'B' R'L' U'D' F² UD²' (8,16)
x-symm2Cx-symm2C back - x-symm2C hintenUFaRaU'aFaU'aF'aU'
U FB RL U'D' FB U'D' F'B' U' (8,14)
UF²RaFaRaUaF²UD²'
U F² RL FB RL UD F² UD²' (8,16)
x-symm2Dx-symm2D back - x-symm2D hintenFR²eB²LF'aU'm'eR'B²RaU'a
F R² U'D B² L F'B' U' RL' U'D R' B² RL U'D' (13,22)
x-symm2Ex-symm2E back - x-symm2E hintenFR²eB²LU'aFaR²Fes'DR'a
F R² U'D B² L U'D' FB R² F U'D F'B D R'L' (13,22)
x-symm2Fx-symm2F back - x-symm2F hintenUF'RULU'RF'U'RUm'B'R'aF'D
U F' R U L U' R F' U' R U RL' B' R' L' F' D (18)
sRU²RD²R'e'FR²D²FR'aD
FB' R U² R D² R' UD' F R² D² F R'L' D (13,20)
x-symm2Gx-symm2G back - x-symm2G hintenFR'F'Re'F'D'F'R'U'L'B'UL'F'D'L
F R' F' R UD' F' D' F' R' U' L' B' U L' F' D' L (17,18)
UFaR'U²F²R'e'FU²F'D²F'mU²
U FB R' U² F² R' UD' F U² F' D² F' R'L U² (14,22)
x-symm2Hx-symm2H back - x-symm2H hintenFULUF'R'aUB'L'F'eB'U'aR²Ua
F U L U F' R'L' U B' L' F' U'D B' U'D' R² UD (15,20)
FURD'R²U²FUaBD²L²U'LDBRa
F U R D' R² U² F UD B D² L² U' L D B RL (16,22)
x-symm2Ix-symm2I back - x-symm2I hintenD²sLF²eR²BU'aRaF²Re'mUF'a
U²'D² L F² U'D R² B U'D' RL F² R UD' R'L U F'B' (14,26)
FU²RaDF²UR²DF²DF'aU²LF²R²B²e
F U² RL D F² U R² D F² D F'B' U² L F² R² B² U'D (17,28)
x-symm2Jx-symm2J back - x-symm2J hintensRF²LB²R'eFL²U²FR'aU
FB' R F² L B² R' U'D F L² U² F R'L' U (13,20)
x-symm2Kx-symm2K back - x-symm2K hintensU²LFaL²UseB'R'aUR²
FB' U² L FB L² U FB' U'D B' R'L' U R² (12,20)
x-symm2Lx-symm2L back - x-symm2L hintenFaUaR'aU²F'aU'aRaU²
FB UD R'L' U² F'B' U'D' RL U² (8,16)
x-symm2Mx-symm2M back - x-symm2M hintenFaUaR'aU²FaUaR'aD²
FB UD R'L' U² FB UD R'L' D² (8,16)
x-symm2Nx-symm2N back - x-symm2N hintenFaRaFaR²U's²R²sD'R²U'a
FB RL FB R² U' F²'B² R²'L² D' R² U'D' (10,22)
x-symm2Ox-symm2O back - x-symm2O hintenFR'BLUBRUaLFDRFL'BR²s
F R' B L U B R UD L F D R F L' B R²'L² (16,20)
F²RaFaRaUaF²U's²R²sD'
F² RL FB RL U D F² U' F²'B² R²'L² D' (10,22)
x-symm2Px-symm2P back - x-symm2P hintenFaUaR'aF'aUaRaD²s
FB UD R'L' F'B' UD RL U²'D² (7,16)
x-symm2Qx-symm2Q back - x-symm2Q hintenFaUaR'aFaU'aR'a
FB UD R'L' FB U'D' R'L' (6,12)
x-symm2Rx-symm2R back - x-symm2R hintenFRaB'R'aBU'aF'aU'aF'R'aFRaB'
F RL B' R'L' B U'D' F'B' U'D' F' R'L' F RL B' (13,20)
FaRaFae'F²U's²R²sD'F²U²
FB RL FB UD' F² U' F²'B² R²'L² D' F² U² (11,24)
x-symm2Sx-symm2S back - x-symm2S hintenFaRF'amFaRaUaFaRFaL²
FB R F'B' LR' FB RL UD FB R FB L² (11,20)
F²UsU²RasL²F²U'aB²D'F²
F² U FB' U² RL FB' L² F² U'D' B² D' F² (12,22)
x-symm2Tx-symm2T back - x-symm2T hintenFe'Fe'R²U²L'F²e'L²FRaUB'
F UD' F UD' R² U² L' F² UD' L² F RL U B' (14,22)
x-symm2Ux-symm2U back - x-symm2U hintenFRBLDs'L'eF'B²e'B'D'R'B'U'
F R B L D F'B L' U'D F'B² UD' B' D' R' B' U' (15,20)
x-symm2Vx-symm2V back - x-symm2V hintenFR'U'aRD'F'D'RU'aLU'B'U'LU'aL'B
F R' U'D' R D' F' D' R U'D' L U' B' U' L U'D' L' B (17,20)
sRD²Ls²R'F²R'eBU²F²mD'
FB' R D² L F²'B² R' F² R' U'D B U² F² R'L D' (15,24)
x-symm2Wx-symm2W back - x-symm2W hintensU²RFaR²U'D²seB'R'aUL²
FB' U² RF B R² U'D² FB' U'D B' R'L' U L² (12,22)
x-symm2Xx-symm2X back - x-symm2X hintenFRU'D²s'R'B'm'DBm'U'L'F'
F R U'D² F'B R' B' RL' D B RL' U' L' F' (13,18)
x-symm2Yx-symm2Y back - x-symm2Y hintenFU²mF²URaF'aD²F'msR'Ua
F U² R'L F² U RL F'B' D² F' R'L FB' R' UD (13,22)
x-symm2Zx-symm2Z back - x-symm2Z hintenFRaU'RU²BR'FLB'L'BLD'sU'FD'F'
F RL U' R U² B R' F L B' L' B L D' FB' U' F D' F' (19,22)
sRe'B²R²B'm'DF²Ds²U'L²D'
FB' R UD' B² R² B' RL' D F² D F²'B² U' L² D' (14,24)
x-symm30x-symm30 back - x-symm30 hintensU²LF'aD's'eBU²RaDL²
FB' U² L F'B' D' F'B U'D B U² RL D L² (12,20)
x-symm31x-symm31 back - x-symm31 hintenFaUaR'aU²FaUaR'aU²
FB UD R'L' U² FB UD R'L' U² (8,16)
x-symm32x-symm32 back - x-symm32 hintenFaUaR'aU²F'aU'aRaD²
FB UD R'L' U² F'B' U'D' RL D² (8,16)
x-symm33x-symm33 back - x-symm33 hintenF²Um'D²Fam'B²R²U'aL²D'B²
F² U RL' D² FB RL' B² R² U'D' L² D' B² (12,22)
x-symm34x-symm34 back - x-symm34 hintenFaRaFaR²U's²R²sD'R²Ua
FB RL FB R² U' F²'B² R²'L² D' R² UD (10,22)
x-symm35x-symm35 back - x-symm35 hintenFaUaR'aFaU'aR'aD²s
FB UD R'L' FB U'D' R'L' U²'D² (7,16)
x-symm36x-symm36 back - x-symm36 hintenFaUaR'aF'aUaRa
FB UD R'L' F'B' UD RL (6,12)
x-symm37x-symm37 back - x-symm37 hintenFaRFam'F'aR'aUaF'aLFaR²
FB R FB RL' F'B' R'L' UD F'B' L FB R² (11,20)
F²UsU²RasL²F²UaF²D'B²
F² U FB' U² RL FB' L² F² UD F² D' B² (12,22)
x-symm38x-symm38 back - x-symm38 hintenFaRaFae'F²U's²R²sD'F²D²
FB RL FB UD' F² U' F²'B² R²'L² D' F² D² (11,24)
x-symm39x-symm39 back - x-symm39 hintenFaRsmFL²FaU'aLD²sL²D
FB R FB' R'L F L² FB U'D' L D² FB' L² D (13,22)
x-symm3Ax-symm3A back - x-symm3A hintenFaR²FaU'sD'L'U'BR'aD'BLBD
FB R² FB U' FB' D' L' U' B R'L' D' B L B D (15,20)
x-symm3Bx-symm3B back - x-symm3B hintensU²RFaR²Us'eF'R'aUR²
FB' U² R FB R² U F'B U'D F' R'L' U R² (12,20)
x-symm3Cx-symm3C back - x-symm3C hintenFm'U'R²DB'L'B'DB'U'FDB'DRUR'e
F RL' U' R² D B' L' B' D B' U' F D B' D R U R' U'D (19,22)
sRe'FL²FR²sB'D²F'm'UL²U²
FB' R UD' F L² F R²'L² B' D² F' RL' U L² U² (14,24)
x-symm3Dx-symm3D back - x-symm3D hintenFm'Bm'U²R²D'F²mD²FUaRF'
F RL' B RL' U² R² D' F² R'L D² F UD R F' (14,22)
x-symm3Ex-symm3E back - x-symm3E hintensU²RFaR²Dse'F²'BR'aUR²
FB' U² R FB R² D FB' UD' F²'B R'L' U R² (12,22)
x-symm3Fx-symm3F back - x-symm3F hintenFR'D'RFL²R'UBU'R'UR'aU'aF'aDF²
F R' D' R F R'L² U B U' R' U R'L' U'D' F'B' D F² (16,22)
FaR'F²U²R'eBR²B'U²F'D²sm'D
FB R' F² U² R' U'D B R² B' U² F' U²'D² RL' D (14,24)
               
  english discussion about mentioned sequences (back to top) deutsche Erörterung von Zugfolgen (zurück nach oben)  
   
X-symmetric positions


There are 3 X-symmetry groups; each fixes one of the axis connecting opposite faces of the cube. Here we fix the U-D axis. There are 1²8 positions that are invariant under all symmetries that fix this axis; 4 of which have more symmetry, namely
M-symmetry. I have even calculated all minimal maneuvers for most of these positions, using my optimal cube solver.

Reid

 
go to the top of the site
 
X-symmetrische Stellungen

Hier 3 x-symmetrische Gruppen; jede behandelt eine der Achsen, die einander gegenüberliegende Seiten des Würfels verbinden. Hier beschäftigen wir uns mit der Achse, die durch die obere und die untere Schicht gehen. Es gibt 128 Stellungen, die unter allen Symmetrien, die diese Achse betreffen, unveränderlich sind, 4, die mehrere Symmetrien innehaben, speziell die der M-Symmetrie. Auch hier habe ich die minimalen Drehungen für die meisten Stellungen berechnet, unter Verwendung meines optimal cube solver.

Reid

   
01/14/2009 14.01.2009
         

 

 

 

 

 

 

 

 

 

 

 

 

mail to Admin - email an den Administrator