NavigationMatrixPatterns - MusterSolution - Lösungsolutions for higher cubes and other types - Lösungen für größere Würfel und andere TypenLinksspeedcubing - Schnelldrehendiary - Tagebuchpoetry - Poesiequicklink speedcubing - Schnellzugriff Schnelldrehenagainst righteous - gegen Rechtsabout me - über michmail to Admin - email an den AdministratorImpressumJF-system compared by web authors - JF-System-Vergleich über Web-Autoren
Deutsch 5D e-Symmetrie - entworfen von Reidenglish 5D e-symmetrie - by Reid
Corners Moved Straight - Edges Moved Straight 1Corners Moved Straight - Edges Moved Straight 2Corners Moved Straight - Edges Moved Diagonal P1Corners Moved Straight - Edges Moved Diagonal P2Corners Moved Straight - Edges Moved Diagonal M2Corners Moved Straight - Edges Moved Diagonal M1CMD1 EMS1CMD2 EMS1Corners Moved Diagonal 2 - Edges Moved Diagonal P1Corners Moved Diagonal 1 - Edges Moved Diagonal P1Corners Moved Positive - the long arm is the 'arrowpeak'Corners Moved Negative - the long arm is the 'arrowpeak'Corners Moved ParallelCorners Moved CrossEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved ParallelEdges Moved CrossG-Permutation - Nose UpG-Permutation - Hand UpG-Permutation - Hand DownG-Permutation - Nose DownEdges Flipped NeighboursEdges Flipped OppositeEdges Flipped AllCorners Twisted StraightCorners Twisted NeighboursCorners Twisted DiagonalCorners Twisted PositiveCorners Twisted NegativeCorners Twisted RegularCorners Twisted IrregularCorners Moved Straight - Twisted StraightCorners Moved Straight - Twisted NeighboursCorners Moved Straight - Twisted DiagonalCorners Moved Straight - Twisted PositiveCorners Moved Straight - Twisted NegativeCorners Moved Straight - Twisted IrregularCorners Moved Straight - Twisted Regular
Twisting Corners & Flipping EdgesCorners Moved StraightCorners Moved DiagonalCorners Moved Positive - the long arm is the 'arrowpeak'Corners Moved Negative - the long arm is the 'arrowpeak'Corners Moved ParallelCorners Moved CrossFlipping EdgesEdges Moved StraightEdges Moved DiagonalEdges Moved Positive - the long arm is the 'arrowpeak'Edges Moved Negative - the long arm is the 'arrowpeak'Edges Moved ParallelEdges Moved Crossbest browser - Bester Browsercolor distribution - Farbverteilung
patterns by opposite swap - Muster durch gegenseitigen Tauschpattern index - Muster Indexpatterns by two axis swap - Muster durch 2-Achsen-Tauschpattern index - Muster Indexpatterns on two hemispheres by 1 axis cycle - Muster auf 2 Orientierungen, 1 Achsepattern index - Muster Index4 site cycle by 1 axis - Drehung von 4 Seiten durch 1 Achsepattern index - Muster Indexcycle of 6 sites by 1 axis - Drehung von 6 Seiten um 1 Achsepattern index - Muster Indexcheating swaps - betrügerisches Tauschenpattern index - Muster Indexpatterns by illegal swap - Muster durch illegalen Tauschpattern index - Muster Indexcollections - Sammlungenpattern index - Muster IndexDeclinations - Deklinationenpattern index - Muster IndexPrinting those Patterns
cheating swaps - betrügerisches Tauschen7D - odds / unregelmäßigepattern index - Muster Index7D - bars / Balkenpattern index - Muster Index7D - letters / Buchstabenpattern index - Muster Index7D - odds / unregelmäßigepattern index - Muster Index7D - flips of edges / Wendungen von Kantenpattern index - Muster Index7D - twists of corners / Eckendreherpattern index - Muster Indexirregular 3 bars outside - 3 irreguläre Außenbalkenpattern index - Muster Indexbs1 - flipping one edge by handpattern index - Muster Indexbs1 - flipping one edge by handpattern index - Muster Indexbs1 - flipping one edge by handpattern index - Muster Indexpattern index - Muster Index
AT-Symmetrie - by Reidpattern index - Muster IndexE-Symmetrie - by Reidpattern index - Muster IndexH-Symmetrie - by Reidpattern index - Muster IndexM-Symmetrie - by Reidpattern index - Muster IndexT-Symmetrie - by Reidpattern index - Muster IndexX-Symmetrie - by Reidpattern index - Muster IndexPatterns created by Reidpattern index - Muster Index
e-symm00
e-symm00e-symm00 back - e-symm00 hintenF'aUR'em'UR'D'Lem'D'LF'a
F'B' U R' U'D RL' U R' D' L U'D RL' D' L F' B' (14,20)
FRaFU'aFR²sD²sBR'aBUaB
F RL F U'D' F R²'L² U²'D² B R'L' B UD B (12,22)
e-symm01e-symm01 back - e-symm01 hintenF'R²UaR'aU'FaR²F'U'as'U'aB'
F' R² UD R'L' U' FB R² F' U'D' F'B U'D' B' (12,20)
e-symm02e-symm02 back - e-symm02 hintenF'aR'aFaUaR'aU'a
F'B' R'L' FB UD R'L' U'D' (6,12)
e-symm03e-symm03 back - e-symm03 hintenFU²RFaR'U²BRaBU'amU'L²
F U² R FB R' U² B RL B U'D' R'L U' L² (13,20)
e-symm04e-symm04 back - e-symm04 hintenFR'FLe'L'UReF'D'Be'B'R'FR'
F R' F L UD' L' U R U'D F' D' B UD' B' R' F R' (17,20)
F²UD²'L²FUaF'L²UFaUR'as'R
F² UD²' L² F UD F' L² U FB U R'L' F'B R (17,22)
e-symm05e-symm05 back - e-symm05 hintenFaR'aFaU'aRaU'a
FB R'L' FB U'D' RL U'D' (6,12)
e-symm06e-symm06 back - e-symm06 hintenFRU²FLBe'FLDs'DRBD
F R U² F L B UD' F L D F'B D R B D (15,18)
e-symm07e-symm07 back - e-symm07 hintenFU²s'DB'LBLD'B²R'DFDF'RD²F'
F U² F'B D B' L B L D' B² R' D F D F' R D² F' (18,22)
F'R²D²FeF²RB²LF²RD²sU'F'a
F' R² D² F U'D F² R B² L F² R D² FB' U' F'B' (15,24)
e-symm08e-symm08 back - e-symm08 hintenF'RFUR²UF'L'DFU²R'F'B²R'D'R'B'U'
F' R F U R² U F' L' D F U² R' F'B² R' D' R' B' U' (18,22)
e-symm09e-symm09 back - e-symm09 hintenFR²B'L'U'L's'DBRBRFU'RD²sF'
F R² B' L' U' L' F'B D B R B R F U' R U² D² F' (17,22)
e-symm10e-symm10 back - e-symm10 hintenFaR²U'FLFU'sRF'U'B'm'B'Ra
FB R² U' F L F U' FB' R F' U' B' RL' B' RL (15,20)
FR²e'F²L'UaL²Be'sU'D²Fa
F R² UD' F² L' UD L² B UD' FB' U'D² FB (12,22)
e-symm11e-symm11 back - e-symm11 hintenFR'DBUaF'LBDR'FmB'U'F'aLF'DL
F R' D B UD F' L B D R' F R'L B' U' F' B' L F' D L (19,22)
FaUFL²D²F²'BRFaRF'L²D²R²U²BU
FB U F L² D² F²'B R F B R F' L² D² R² U² B U (16,26)
 
 
  english discussion about mentioned sequences (back to top) go to the top of the site deutsche Erörterung von Zugfolgen (zurück nach oben)  
   


E-symmetric positions

These are the positions that are invariant under all rotations of the cube producing an even permutation of the six faces. There are 72 such positions; 24 have more symmetry, namely H-symmetry, and 4 of these have M-symmetry. The other 48 positions fall into 12 patterns, as shown below. I have also calculated all minimal maneuvers, using my optimal cube solver.

Reid

   


E-symmetrische Stellungen

Hier werden alle Stellungen gezeigt, die unter allen geraden Drehungen des Würfels auf allen sechs Seiten unveränderlich sind. Hier gibt es 72 solche Stellungen, 24 haben mehrere Symmetrien, namentlich H-Symmetrie, und 4 davon M-Symmetrie. die anderen 28 Stellungen betreffen 12 Muster, wie oben gezeigt. Auch hier habe ich alle minmalen Zugzahlen durch meinen optimal cube solver ermittelt.

Reid

   
  01/14/2009 14.01.2009  
       

 

 

 

 

 

 

 

 

 

 

 

 

mail to Admin - email an den Administrator